
Applying DAC principles to the RDF graph
data model

Sabrina Kirrane1,2, Alessandra Mileo1, and Stefan Decker1

1 Digital Enterprise Research Institute
National University of Ireland, Galway

http://www.deri.ie

{firstname.lastname}@deri.ie
2 Storm Technology, Ireland

http://www.storm.ie

Abstract. In this paper we examine how Discretionary Access Control
principles, that have been successfully applied to relational and XML
data, can be applied to the Resource Description Framework (RDF)
graph data model. The objective being to provide a baseline for the
specification of a general authorisation framework for the RDF data
model. Towards this end we provide a summary of access control require-
ments for graph data structures, based on the different characteristics of
graph models compared to relational and tree data models. We subse-
quently focus on the RDF data model and identify a list of access rights
based on SPARQL query operations; propose a layered approach to au-
thorisation derivation based on the graph structure and RDFSchema;
and demonstrate how SQL GRANT and REVOKE commands can be
adapted to cater for delegation of privileges in SPARQL.

1 Introduction

A Data Model is an abstraction used to represent real world entities, the re-
lationship between these entities and the operations that can be performed on
the data. Database models can be broadly categorised as relational, tree and
graph based. An important requirement for any of Database Management Sys-
tems (DBMSs) is the ability to protect data from unauthorised access. An Access
Control Model is a blueprint for defining authorisations which restrict access to
data. Discretionary Access Control (DAC), Mandatory Access Control (MAC)
and Role Based Access Control (RBAC) are the predominant access control
models both found in the literature and used in practice. In this paper we focus
specifically on DAC and examine how it can be used to restrict access to RDF
data. We base our work on the DAC model as: it has been successfully adopted
by several relational DBMS vendors; because of its inherent flexibility; and its
potential for handling context based authorisations in the future.

Several researchers have investigated how to add access control to RDF data.
Existing approaches can be categorised as ontology based [9, 23], rules based and
[15, 11, 18] and inference based [15, 20, 16, 21, 1]. In previous work, which would

http://www.deri.ie
http://www.storm.ie

also be categorised as inference based, we demonstrated how Annotated RDF can
be used to propagate permissions assigned to triples based on RDFSchema [19].
We proposed a number of rules that can be used for the derivation of access rights
based on subject, access rights and resource hierarchies [22]. In this paper, we
examine the specification, derivation and delegation of access control over RDF
graph data guided by DAC principles and experiences applying these principles
to the relational and tree based data models. Based on our analysis, we make the
following contributions:(i) discuss how DAC principles can be used to restrict
access to RDF data; (ii) describe how the graph structure can be used to derive
implicit access rights; (iii) propose a set of rules that are necessary for derivation
of authorisations based on RDFSchema; and (iv) demonstrate how SQL grant
and revoke commands can be adapted to manage RDF authorisations. Together
these contributions provide a solid building block for DAC policy enforcement
for the RDF data model.

The remainder of the paper is structured as follows: In Section 4 we discuss
related work. Section 2 describes how DAC is used to restrict access to relational
and tree based data models. Issues applying DAC to graph data are discussed and
possible handling mechanisms are proposed in Section 3. Finally, we conclude
and outline directions for future work in Section 5.

2 Preliminaries

DAC policies limit access to data resources based on access rules stating the
actions that can be performed by a subject. The term subject is an umbrella
term used to collectively refer to users, roles, groups and attribute-value pairs.
In DAC access to resources are constrained by a central access control policy,
however users are allowed to override the central policy and can pass their access
rights on to other users [25], known formally as delegation. Over the years the
DAC model has been extended to consider: constraint based authorisations (e.g.
time, location); access to groups of users, resources and permissions; support for
both positive and negative authorisations; and conflict resolution mechanisms
[24]. In this section we describe how DAC is used to protect relational and tree
based data models.

2.1 Applying DAC to the Relational Model

In the relational model (Fig.1), data items are grouped into n-ary relations. A
relation header is composed of a set of named data types known as attributes. The
relation body is in turn made up of zero of more tuples i.e. sets of attribute values.
A primary key, composed of one or more attributes which uniquely identifies
each tuple, is defined for each relation. Relations are connected when one or
more attributes (i.e. a foreign key) in a relation are linked to a primary key in
another relation. Relations can be categorised as base relations or views. Base
relations are actually stored in the database whereas views are virtual relations
derived from other relations. Views are commonly used to: (i) provide access to

A1 ... An

Relations

Attributes

Tuples
Value

ViewDatabase Schema

Fig. 1. Relational Data Model

information from multiple relations; (ii) restrict access to particular attributes
or tuples; and (iii) derive data (e.g. sum, average, min and max).

In relational databases access is restricted both at a schema level (database,
relations and attributes) and a data level (tuples and values). The access rights
themselves are tightly coupled with database operations such as SELECT, INSERT,

UPDATE, DELETE and DROP. In addition the GRANT privilege allows users to grant
access to others based on their own privileges. Griffiths and Wade [14] describe
how DAC is implemented in System R [3] an experimental DBMS developed to
carry out research on the relational data model. Two of the underpinning princi-
ples of DAC are derivation of implicit authorisations from explicit authorisations
and the delegation of access rights.

Authorisations explicitly defined at schema level are implicitly inherited by
other database entities, for example (i) database authorisations are inherited
by all database resources; (ii) relation authorisations are inherited by all tuples;
and (iii) attribute authorisations are inherited by all attribute values. Aside from
Schema level derivations Griffiths and Wade [14] describe how views can be used
to implicitly grant access to one or more tables, attributes or tuples spanning
multiple relations. Under DAC database users are granted sole ownership of the
tables and views that they create. They can subsequently grant access rights to
other database users. Griffiths and Wade [14] and Bertino et al. [8] discuss how
the revocations process is complicated due to recursive delegation of permissions
and propose algorithms which are used to revoke access rights.

2.2 Applying DAC to the Tree Model

In the tree model data is organised into a hierarchical structure with a single
root node. Each data item, represented as a node, is composed of one or more
attributes. Relations are connected via parent-child links: whereby each parent
can have many children, however each child can have only one parent. Both
object-oriented databases and the Extensible Markup Language (XML) are ex-
amples of the tree model. In the remainder of this section, we focus on XML
however it is worth noting that the core derivation and delegation principles can
also be applied to other instances of the tree data model.

Root

Attributes

Elements

A1..An

ViewDTD/XMLSchema

Fig. 2. XML Tree Model

In an XML data model (Fig.2) relations are represented as elements that
can contain textual information and zero or more attribute-value pairs. Simple
elements contain data values whereas complex data types are constructed from
other elements and/or attributes giving XML it’s hierarchical structure. A Doc-
ument Type Definition (DTD) or an XMLSchema describe the structure of an
XML document. In contrast to the relational model, XML data is not necessarily
an instance of some schema.

Bertino et al. [6] describe how DAC is implemented in Author-X a prototype
developed to demonstrate how access control policies can be applied to XML
documents, that may or may not conform to a DTD/XMLSchema, exposed on
the web. Similar to the relational model, tree based access control can also be
specified at both schema and data levels. From a schema perspective access
can be restricted based on the structure of the document/data item, a DTD
or an XMLSchema. Whereas data level restrictions can be applied to specific
elements and attributes. Similar to the relational model the access rights reflect
the operations commonly performed on an XML document for example READ,

APPEND, WRITE, DELETE and INSERT.
Propagation of authorisations based on the is-part-of relationship between

documents, elements, sub-elements and attributes is one of the key features
of DAC for XML [5]. Although implicit authorisations simplify access control
administration, a knock on effect is that exceptions need to be catered for. In
XML inheritance chains can be broken by explicitly specifying authorisations for
leaf nodes. In addition, a combination of positive and negative authorisation can
be used to grant access in the general case and deny access for specific instances.
The introduction of negative authorisation brings with it the need for conflict
resolution mechanisms (e.g. denial takes precedence). Gabillon [13] describes how
delegation of privileges can be adapted to work for XML databases. The author
defines a security policy language for XML which incorporates SQL GRANT
and REVOKE commands.

3 Applying DAC to RDF

In this section we describe how the graph data model differs from the tree data
model. We discuss how DAC can be applied to graph-based data and detail

Graph View

Triple

Predicate

Subject

Object

Fig. 3. RDF Graph Model

the implication such structural differences have on access control in general.
Although in this paper we focus on RDF specifically a number of observations
can be applied to other graph data models.

3.1 The RDF Data Model

The graph data model extends the tree model by allowing each node to have
multiple parent relations, resulting in a generalized graph structure. Undirected
and directed binary relationships between nodes are represented as edges and
arcs respectively. In a directed graph the node from which an arc originates is
called the head and the destination the tail. Graphs differ from trees in several
aspects, for example: a graph doesn’t have a top or bottom; a node can have more
than one parent; a node can be its own ancestor; and multiple paths between
nodes are permissible. The graph data model is often used where information
about the graph topology is just as important as the data itself. An overview of
several graph based models is provided by Angles and Gutierrez [2].

The RDF graph model is designed to represent knowledge in a distributed
manner. RDF captures the semantics of data and presents it in a machine read-
able format. Uniform Resource Identifiers (URIs) in turn are used to uniquely
identify data items. The fundamental building block of the RDF data model
(Fig.3) is an RDF triple which constitutes a statement about the relation-
ship between two nodes. An RDF triple is represented as a tuple 〈S, P,O〉 ∈
UB × U × UBL 3, where S is called the subject, P the predicate, and O the
object and U, B and L, are used to represent URIs, blank nodes and literals
respectively. The following triples represented using N3 4 use the FOAF 5 vo-
cabulary, a subset of which is presented in Fig. 4, to state that the JoeBloggs

is a person who’s first name is Joe and lastname is Bloggs:

entx:JoeBloggs rdf:type foaf:Person.

entx:JoeBloggs foaf:givenName "Joe".

entx:JoeBloggs foaf:lastName "Bloggs ".

3 For conciseness, we represent the union of sets simply by concatenating their names.
4 http://www.w3.org/TeamSubmission/n3/
5 FOAF Vocabulary Specification, http://xmlns.com/foaf/spec/.

1 foaf:Person rdf:type rdfs:Class.

2 foaf:givenName rdf:type rdf:Property.

3 foaf:givenName rdfs:domain foaf:Person.

4 foaf:lastName rdf:type rdf:Property.

5 foaf:lastName rdfs:domain foaf:Person.

Fig. 4. Subset of FOAF Vocabulary

1 entx:G1 {

2 entx:salary rdf:type rdf:Property.

3 entx:salary rdfs:domain foaf:Person.

4 entx:JoeBloggs rdf:type foaf:Person.

5 entx:JoeBloggs foaf:givenName "Joe".

6 entx:JoeBloggs foaf:lastName "Bloggs ".

7 entx:JoeBloggs entx:salary "40000".

8 entx:MayRyan rdf:type foaf:Person.

9 entx:MayRyan foaf:givenName "May".

10 entx:MayRyan foaf:lastName "Ryan".

11 entx:MayRyan entx:salary "80000".

12 }

Fig. 5. Snapshot of Enterprise Employee Data

RDFSchema is a set of classes and properties used to describe RDF data.
Unlike XMLSchema, RDFSchema does not describe the structure of an RDF
graph. Instead RDFSchema provides a framework used by vocabularies (known
formally as ontologies) to describe classes, properties and relations.

In RDF there is a tight coupling between the schema and instance data.
Unlike the relational and XML data models classes, properties and instances
cannot be identified based on the structure alone. Like XML, Namespaces are
used to uniquely identify a collection of RDF resources. Prefixes are used as a
shorthand notation for ontology Namespaces. In this paper, we use the following
ontologies RDF, RDFSchema(RDFS), FOAF and a sample enterprise ontology:

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#> .

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

@prefix entx: <http :// urq.deri.org/enterprisex#> .

An RDF graph is a finite set of RDF triples. Named graphs are used to collectively
refer to a number of RDF statements. In this paper we use TriG 6, an extension
of N3, which uses curly brackets to group triples into multiple graphs identifiable
by a URI (Fig.5). In practice the triple and the named graph are stored as quads.

6 http://www.w3.org/2010/01/Turtle/Trig/

3.2 Graph based and Schema based Authorisations

The first step in the identification of access control requirements for RDF data is
to identify the resources that need to be protected and the access rights required.
The graph data model alone is quite limiting when it comes to the management
of access rights. Therefore in Section 3.3, we examine how RDFSchema can be
used to define more expressive authorisations.

RDF Resources. From a data perspective access can be restricted to a node
(subject or object), an arc (property), two connected nodes (triple), a collection
of nodes and edges (multiple triples that share a common subject) or arbitrary
views of the data (named graphs). Whereas from a schema perspective authorisa-
tions can be applied to classes and properties. Given the tight coupling between
schema and data items, authorisations based on classes (e.g. foaf:person) and
properties (e.g. foaf:givenName) would need to be derived using schematic vo-
cabulary such as RDFSchema or Web Ontology Language (OWL) 7. In Sec-
tion 3.3, we examine how permissions can be derived based on both the graph
structure and RDFSchema.

Access Rights. The access rights of both the relational and XML data models
are very similar and differ primarily by vocabulary. SPARQL proposes several
operations similar to ones that exist for relational and XML data (SELECT,
INSERT, DELETE/INSERT, DELETE and DROP). However SPARQL also defines a
number of additional query operations (CONSTRUCT, ASK and DESCRIBE) and a
number of operations specifically for graph management (CREATE, COPY, MOVE

and ADD). Notable omissions from the list of SPARQL operations are the GRANT

and REVOKE commands which allows users to grant access to or revoke access
from others access based on their own privileges. In Section 3.4 we discuss how
the grant and revoke operations could be accommodated in SPARQL.

Access Control Policy. An Access Control Policy details the actual authorisa-
tions and access restrictions to be enforced. Each authorisation is represented as
a quad 〈Sub,Acc, Sign,Res〉 where Sub denotes the subject (not to be confused
with an RDF triple subject), Acc the access rights, Sign indicates if the user is
granted or denied access and Res represents the resource to be protected (i.e.
rdf quad with optional variables, represented using a ? prefix, in any position). A
matrix outlining the access rights that are appropriate for each operation (rep-
resented by an X) is provided in Table 1. For conciseness two connected nodes
is abbreviated to Con, a collection of nodes and edges to Col and RDF prop-
erties to Prop. A sample access control policy is in turn presented in Table 2.
Each authorisation is labelled (An) to ease referenceability. (A1), (A2) and (A3)
grant access rights SELECT, INSERT and DELETE to the graph entx:G1, (A4)
grants access to a particular class and (A5) denies access to the salary property.

7 http://www.w3.org/TR/owl2-overview/

Table 1. Relationship between Access Rights and Resources

Rights Node Arc Con. Col. View Prop. Class

SELECT X X X X X X X
CONSTRUCT X X X X X X X
ASK X X X X X X X
DESCRIBE X X X X X X X
INSERT X
DELETE X
DROP X
CREATE X
COPY X
MOVE X
ADD X
GRANT X X X X
REVOKE X X X X

Data Model Schema

Table 2. Sample Access Control Policy

Sub Rights Sign Res

(A1) Mgr SELECT + ?S ?P ?O entx:G1

(A2) Mgr INSERT + ?S ?P ?O entx:G1

(A3) Mgr DELETE + ?S ?P ?O entx:G1

(A4) Emp SELECT + ?S rdf:type rdf:Class entx:G1

(A5) Emp SELECT - entx:salary rdf:type rdf:Property entx:G1

If no explicit or implicit policy exists it is possible to adopt either a closed policy
(deny access by default) or an open policy (grant access by default).

3.3 Derivation of Authorisations

In both the relational model and the tree model authorisations can be derived
based on the data schema. When it comes to the RDF data model similar deriva-
tions are highly desirable as they simplify authorisation administration. Existing
RDF database vendors adopt a view based approach to derivation, organising
triples into named graphs based on the access control requirements and grant-
ing access to the entire graph. Although similar to views in relational databases
in this instance the graph is materialised. An alternative approach would be
to derive permissions based on the graph structure. However as it isn’t possi-
ble to distinguish between schema and instance data such an approach alone
is quiet limited. Therefore we propose an additional layer of derivations based
on a vocabulary such as RDFSchema to define rules that leverage the seman-
tic relations between nodes and edges. In the following rules both the premises
(above the line) and the conclusion (below the line) are represented as a 5 tuple

〈S, P,O, γ, λ〉. Where: (i) S represents a subject, P a predicate and O an ob-
ject (together they represent a triple); (ii) γ is used to denote a named graph
(which may or may not be the same for each triple); and (iii) λ is used to rep-
resent permissions i.e. authorisation subject, access rights and sign attributes
〈Sub,Acc, Sign〉. By including the named graph in the derivation rules it is pos-
sible to constrain the derivation to a particular graph or alternatively to span
multiple graphs. Such graphs in turn can be distributed across multiple data
sources.

Derivation based on the graph structure. Similar to the tree model we
could assign permissions to a node and recursively derive authorisations for all
nodes connected to it by arcs. Another approach would be to derive authori-
sations for all nodes along a particular path. Existing graph search algorithms,
such as those proposed by Tarjan [26], could be used to recursively traverse the
graph and assign permissions to the nodes. A thorough investigation into the
application of graph traversal and access control is proposed in future work.

Derivation based on RDFSchema. One limitation of the RDF data model
is that it isn’t possible to distinguish between schema and instances from the
graph structure alone. For example to restrict access to attributes we would
need a means to derive permissions for all instances of a particular property type.
Likewise to restrict access to a relation we would need to derive permissions for all
properties that are instances of a particular class. To accommodate schema based
derivation a combined data approach to derivation is warranted. The following
rules can be used to derive access rights based on the RDFSchema vocabulary.

Rule 1. Using this rule we can derive λ, which has been assigned to a class, for
all instances of that class.

?X rdf:type rdf:Class γ λ, ?Z rdf:type ?X γ, ?Z ?Y ?A γ

?Z ?Y ?A γ λ
(R1)

Rule 2. In this rule, λ which has been assigned to a property of a class, is derived
for all instances of that property.

?X rdf:type rdf:Class γ, ?Y rdf:type rdf:Property γ λ,

?Y rdfs:domain ?X γ, ?Z ?Y ?A γ

?Z ?Y ?A γ λ
(R2)

Rule 3. The following rule propagates λ, assigned to an instance of a class, to
property values associated with that instance.

?X rdf:type rdf:Class γ, ?Z rdf:type ?X γ λ,

?Y rdfs:domain ?X γ, ?Z ?Y ?A γ

?Z ?Y ?A γ λ
(R3)

Table 3. Snapshot of Derived Authorisations

Sub Rights Sign Obj

(DA1) Emp SELECT + entx:JoeBloggs rdf:type foaf:Person entx:G1

(DA2) Emp SELECT + entx:JoeBloggs foaf:givenName "Joe" entx:G1

(DA3) Emp SELECT + entx:JoeBloggs foaf:lastName "Bloggs" entx:G1

(DA4) Emp SELECT + entx:JoeBloggs entx:salary "40000" entx:G1

(DA5) Emp SELECT + entx:MayRyan rdf:type foaf:Person entx:G1

(DA6) Emp SELECT + entx:MayRyan foaf:givenName "May" entx:G1

(DA7) Emp SELECT + entx:MayRyan foaf:lastName "Ryan" entx:G1

(DA8) Emp SELECT + entx:MayRyan entx:salary "80000" entx:G1

(DA9) Emp SELECT - entx:JoeBloggs entx:salary "40000" entx:G1

(DA10) Emp SELECT - entx:MayRyan entx:salary "80000" entx:G1

Given a snapshot of the FOAF ontology (Fig. 4), a subset of an enterprise RDF
dataset (Fig. 5) and a sample access control policy (Table. 2), we can derive
additional authorisations such as those summarised in Table 3. (DA1) to (DA8)
were derived by applying (R1) to (A4). Whereas (DA9) and (DA10) were inferred
from (R2) and (A5).

Two additional rules which use the rdfs:subclass (R4) and rdfs:subproperty

(R5) properties are proposed to demonstrate flexibility that can be gained from
RDFSchema. More expressive rules based on richer vocabularies such as OWL
could also be used. The database should be flexible enough to allow derivations
to be turned on and off on a case by case basis.

Rule 4. In this rule we use the RSFSchema subclass inheritance mechanism to
derive the permissions λ assigned to a class for all subclasses.

?X rdf:type rdf:Class γ λ, ?Y rdf:type rdf:Class γ, ?Y rdfs:subClassOf ?X γ

?Y rdf:type rdf:Class γ λ
(R4)

Rule 5. Similar to the above rule however in this instance we use the subproperty
inheritance to derive the permissions λ assigned to a property for all subprop-
erties.

?X rdf:type rdf:Property γ λ, ?Y rdf:type rdf:Property γ,

?Y rdfs:subPropertyOf ?X γ

?Y rdf:type rdf:Property γ λ
(R5)

3.4 Delegation of Access Rights

In both relational and XML databases GRANT and REVOKE commands are
used to manage delegation of access rights. The SPARQL 1.1 update language
does not currently support the GRANT and REVOKE commands. It thus needs

to be extended to cater for authorisation administration and delegation of ac-
cess rights. We propose an adapted version of the SQL GRANT (Def.1) and
REVOKE (Def.2) commands that caters for named graphs. We adopt the US-
ING NAMED clause from other SPARQL 1.1 operations.

(USING (NAMED)? IRIref)*

In addition in keeping with standard SPARQL we adapt the syntax of the
GRANT OPTION replacing surrounding [] with () and a ? which indicates
cardinality.

(WITH GRANT OPTION)?

Privilege name denotes the privileges identified in Section 3.1 (SELECT, CON-
STRUCT, ASK, DESCRIBE, INSERT, DELETE/INSERT, DELETE, DROP,
COPY, MOVE, ADD). Resource name represents one or more instances of the
following RDF resources (NAMED GRAPH, CLASS, PROPERTY, TRIPLE).
User name, role name, attribute value are used to identify users, roles and
attributes respectively and a reserved word PUBLIC is used to assign access
to all users. Finally the WITH GRANT OPTION is used to provide users with the
ability to delegate the access right(s) to others.

Definition 1 (GRANT command).

GRANT privilege_name

(USING (NAMED)? IRIref)*

ON resource_name

TO {user_name |PUBLIC |role_name |attribute_name}

(WITH GRANT OPTION)?;

Definition 2 (REVOKE command).

REVOKE privilege_name

(USING (NAMED)? IRIref)*

ON resource_name

FROM {user_name |PUBLIC |role_name |attribute_value_pair}

As revocation is not dependent on the data model existing approaches, such as
cascading [12, 14] and non-cascading [7], devised for relational databases would
also work for rdf databases (datastores).

3.5 Conflict Resolution

Conflicts can occur as a result of inconsistent: explicit; derived; and delegated
policies. Samarati [24] discusses the need for different conflict resolution depend-
ing on the situation. Earlier in this section, we proposed a number of derivation
rules to ease RDF access control administration and stated that implicit autho-
risations should be overridden by explicit authorisations. It is important that
the conflict resolution strategy proposed is in keeping with both the derivation
rules and overriding mandate. In this paper, we propose three complementary
approaches to conflict resolution that fit well with DAC: (i) explicit policies

override implicit policies (ensures that positive explicit authorisations will al-
ways prevail over negative implicit authorisations); (ii) most specific along a
path takes precedence (allows users to grant access in the general case and deny
access for specific instances); and (iii) denial takes precedence (caters for scenar-
ios where we have a conflict between two explicit or two implicit authorisations).
In Section 3.3, we seen how derivation rules can result in conflicting authorisa-
tions, for example Table 3 (DA4) and (DA9) or (DA8) and (DA10). As both
policies are implicit the explicit policies override implicit policies strategy is not
applicable. In this instance the negative authorisation would prevail based on
the most specific along a path takes precedence, as a policy assigned to a property
is more specific than one applied to a class.

4 Related Work

Both Costabello et al. [9] and Sacco et al. [23] propose access control vocabularies
and frameworks that can be used to enforce access control policies over RDF
Data. In both instances the authors provide a filtered view of data using SPARQL
ask queries. However the authors do not perform any reasoning over the access
control policies they propose.

Other researchers adopt a rule based approach to access control. Dietzold and
Auer [11] define access control requirements from a Semantic Wiki perspective.
The authors propose a filtered data model using a combination of SPARQL
queries and SWRL rules. Li et al. [18] also adopt a rule based approach providing
users with a more intuitive way to specify access control policies. Both Dietzold
and Auer [11] and Li et al. [18] use rules to give a more explicit meaning to the
access control policies as opposed to authorisation derivation in our case.

Several reseachers Qin and Atluri [20], Javanmardi et al. [16], Ryutov et al.
[21], Amini and Jalili [1] propose access control models for RDF graphs and
focus on policy propagation and enforcement based on semantic relations. None
of the authors examine access control from either a data model or a database
perspective. Similar to us, Jain and Farkas [15] derive authorisations and propose
conflict resolution mechanisms. They adopt a multilevel label-based approach to
access control where policies are specified in terms of RDF patterns associated
with an instance, a schema and a security classification. The derivations they
propose are however limited to RDFSchema entailment rules.

Only Jain and Farkas [15] and Javanmardi et al. [16] actually mention DAC
and even then they just describe DAC and do not examine how their approach
compares or contrasts. A number of authors who use Semantic Technology for
access control however do not apply their approach to the RDF data model,
detail their support for DAC Kodali et al. [17], Damianou et al. [10], Berners-Lee
et al. [4]. However to the best of our knowledge to date no one has investigated
the application of DAC to the RDF data model. We fill this gap by examining
how DAC has been used to protect the relational and tree data models and
by proposing strategies that allow us to apply DAC to the RDF graph model.
We identify the resources to be protected and the access rights required, based

on the RDF data model and SPARQL 8 the predominant RDF query language
respectively. In addition we propose mechanisms to assist with access control
administration through derivation of authorisation, delegation of permissions
and conflict resolution

5 Conclusions and Future Work

Although the RDF data model has been around for over a decade, little research
has been conducted into the application of existing access control administration
to RDF data. In this paper we discussed how the DAC model could be applied
to RDF, a distributed graph based data model. We identified the resources to
be protected and the access rights required based on the graph data model
and SPARQL query operations respectively. We proposed a layered approach
to authorisation derivation based on the graph structure and RDFSchema. We
subsequently identified a number of rules that can be used to manage authorisa-
tions in an intuitive manner. Furthermore we demonstrated how SQL GRANT
and REVOKE commands could be adapted to cater for authorisation admin-
istration over RDF data. As for future work, we propose to further investigate
how enforcement of access control policies can be improved by exploiting the
graph data structure and to examine complexity issues related to management
of authorization over graph data.

Acknowledgements. This work is supported in part by the Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2), the Irish Research Council
for Science, Engineering and Technology Enterprise Partnership Scheme and
Storm Technology Ltd. We would like to thank Nuno Lopes and Aidan Hogan
for their valuable comments on the paper.

References

1. M. Amini and R. Jalili. Multi-level authorisation model and framework for dis-
tributed semantic-aware environments. IET Information Security, 4(4):301, 2010.

2. Renzo Angles and Claudio Gutierrez. Survey of graph database models. Computing
Surveys, 1(212), 2008.

3. M M Astrahan, W Blasgen, D D Chamberlin, K P Eswaran, J N Gray, and P P
Griffiths. System R : Relational Management Approach to Database. 1(2):97–137,
1976.

4. T. Berners-Lee, D.J. Weitzner, and Jim Hendler. Creating a Policy-Aware Web:
Discretionary, Rule-based Access for the World Wide Web. Web and Information
Security, 2006.

5. E. Bertino and R. Sandhu. Database security - concepts, approaches, and chal-
lenges. IEEE Transactions on Dependable and Secure Computing, 2(1):2–19, 2005.

6. E Bertino, S Castano, and Elena Ferrari. Securing XML documents with Author-X.
Internet Computing, IEEE, 5(3):21–31, 2001.

8 http://www.w3.org/TR/sparql11-update/

7. Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. Authorizations in rela-
tional database management systems. Proceedings of the 1st ACM conference on
Computer and communications security - CCS ’93, pages 130–139, 1993.

8. Elisa Bertino, Pierangela Samarati, Sushil Jajodia, and Senior Member. An Ex-
tended Authorization Model for Relational Databases. 9(1):85–101, 1997.

9. Luca Costabello, Serena Villata, and Nicolas Delaforge. Linked data access goes
mobile: Context-aware authorization for graph stores. In LDOW - 5th WWW
Workshop on Linked Data on the Web, 2012.

10. Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The pon-
der policy specification language. Proceedings of the International Workshop on
Policies for Distributed Systems and Networks, pages 29–31, 2001.

11. S Dietzold and S Auer. Access control on RDF triple stores from a semantic wiki
perspective. ESWC Workshop on Scripting for the Semantic Web, 2006.

12. Ronald Fagin. On an authorization mechanism. ACM Transactions on Database
Systems (TODS), 3(3):310–319, 1978.

13. Alban Gabillon. An authorization model for XML databases. Proceedings of the
2004 workshop on Secure web service - SWS ’04, pages 16–28, 2004.

14. PP Griffiths and BW Wade. An authorization mechanism for a relational database
system. ACM Transactions on Database Systems (TODS), 1(3):242–255, 1976.

15. Amit Jain and Csilla Farkas. Secure resource description framework: an access
control model. In: ACM SACMAT, pages 121–129, 2006.

16. S Javanmardi, M Amini, R Jalili, and Y. GanjiSaffar. SBAC:A SemanticBased Ac-
cess Control Model. In 11th Nordic Workshop on Secure IT-systems (NordSec’06),
Linkping, Sweden, 2006.

22. Sabrina Kirrane, Nuno Lopes, Alessandra Mileo, and Stefan Decker. Protect Your
RDF Data! In In Proceedings of the 2nd Joint International Semantic Technology
Conference, 2012.

17. Naren Kodali, Csilla Farkas, and Duminda Wijesekera. Multimedia access control
using rdf metadata. 2003.

18. Huiying Li, Xiang Zhang, Honghan Wu, and Yuzhong Qu. Design and application
of rule based access control policies. In Proc of the Semantic Web and Policy
Workshop, pages 34–41, 2005.

19. Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel Polleres, and Alessan-
dra Mileo. A Logic Programming approach for Access Control over RDF. In
Technical Communications of ICLP’12, 2012.

20. Li Qin and Vijayalakshmi Atluri. Concept-level access control for the Semantic
Web. In Proceedings of the 2003 ACM workshop on XML security - XMLSEC ’03,
page 94. ACM Press, 2003.

21. Tatyana Ryutov, Tatiana Kichkaylo, and Robert Neches. Access Control Policies
for Semantic Networks. In 2009 IEEE International Symposium on Policies for
Distributed Systems and Networks, pages 150–157. Ieee, July 2009.

23. Owen Sacco, Alexandre Passant, and Stefan Decker. An Access Control Framework
for the Web of Data. 10th International Conference on Trust, Security and Privacy
in Computing and Communications, 2011.

24. Pierangela Samarati. Access control: Policies, models, and mechanisms. Founda-
tions of Security Analysis and Design, 2001.

25. RS Sandhu and P Samarati. Access control: principle and practice. Communica-
tions Magazine, IEEE, 1994.

26. Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal
on Computing, 1(2):146–160, June 1972.

	Applying DAC principles to the RDF graph data model
	Introduction
	Preliminaries
	Applying DAC to the Relational Model
	Applying DAC to the Tree Model

	Applying DAC to RDF
	The RDF Data Model
	Graph based and Schema based Authorisations
	RDF Resources.
	Access Rights.
	Access Control Policy.

	Derivation of Authorisations
	Derivation based on the graph structure.
	Derivation based on RDFSchema.

	Delegation of Access Rights
	Conflict Resolution

	Related Work
	Conclusions and Future Work

